Adaptive Oversampling for Imbalanced Data Classification
نویسنده
چکیده
Data imbalance is known to significantly hinder the generalization performance of supervised learning algorithms. A common strategy to overcome this challenge is synthetic oversampling, where synthetic minority class examples are generated to balance the distribution between the examples of the majority and minority classes. We present a novel adaptive oversampling algorithm, VIRTUAL, that combines the benefits of oversampling and active learning. Unlike traditional resampling methods which require preprocessing of the data, VIRTUAL generates synthetic examples for the minority class during the training process, therefore it removes the need for an extra preprocessing stage. In the context of learning with Support Vector Machines, we demonstrate that VIRTUAL outperforms competitive oversampling techniques both in terms of generalization performance and computational complexity.
منابع مشابه
WEMOTE - Word Embedding based Minority Oversampling Technique for Imbalanced Emotion and Sentiment Classification
Imbalanced training data always puzzles the supervised learning based emotion and sentiment classification. Several existing research showed that data sparseness and small disjuncts are the two major factors affecting the classification. Target to these two problems, this paper presents a word embedding based oversampling method. Firstly, a large-scale text corpus is used to train a continuous ...
متن کاملAdaptive Resampling with Active Learning
This paper proposes a novel algorithm Virtual Instances Resampling Technique Using Active Learning (VIRTUAL) for class imbalance problem in Support Vector Machine (SVM) learning. In supervised learning, prediction performance of the classification algorithms deteriorate when the training set is imbalanced. Class imbalance problem occurs when at least one of the classes are represented by substa...
متن کاملA Survey on Methods to Handle Imbalance Dataset
Imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of unbalanced data sets. To handle the problem of imbalanced data is to re balance them artificially by oversampling and/or under-sampling.
متن کاملAn Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets
Most classifiers work well when the class distribution in the response variable of the dataset is well balanced. Problems arise when the dataset is imbalanced. This paper applied four methods: Oversampling, Undersampling, Bagging and Boosting in handling imbalanced datasets. The cardiac surgery dataset has a binary response variable (1=Died, 0=Alive). The sample size is 4976 cases with 4.2% (Di...
متن کاملOversampling for Imbalanced Learning Based on K-Means and SMOTE
Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013